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Abstract. Deep learning research in medical image analysis demon-
strated the capability of predicting molecular information, including tu-
mour mutational status, from cell and tissue morphology extracted from
standard histology images. While this capability holds the promise of
revolutionising pathology, it is of critical importance to go beyond gene-
level mutations and develop methodologies capable of predicting precise
variant mutations. Only then will it be possible to support important
clinical applications, including specific targeted therapies.

To address this need we developed MultiVarNet which allows us to deci-
pher complex genomic patterns, facilitating precise predictions of hotspot
alterations at the protein level. For the first time we demonstrate that
we can achieve notable success in identifying over 20 mutation variants
across major oncogenes. This study introduces a novel approach that
underscores the importance of incorporating the underlying molecular
biology of tumours to enhance algorithm accuracy, moving us towards
more personalized and advanced targeted treatment options for patients.

Keywords: Digital Pathology - Biomedical Imaging - Image Based Phe-
notyping - Tumoral Mutation Variants - Genomic Subtypes.

1 Introduction

With an estimated 9.6 million deaths, or one in six deaths, in 2018 according
to the WHO [5], cancer continues to be a significant global health challenge be-
cause of the heterogeneity and intricacy of the disease. There has been significant
progress in precision medicine aimed to provide more efficient therapies by tar-
geting specific molecular tumour profiles [12]. Molecular diagnostic tools, such as
DNA sequencing, RNA quantification or methylation profiling, can reveal spe-
cific molecular characteristics of the tumours[16, 4]. These techniques are crucial
as they condition the access to molecularly guided treatment options (MGTOs)
which are specifically designed to target these precisely identified alterations [4,
8]. However, these tests require large tumour samples, have long waiting times,
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and are costly [6, 11]. For instance, Gondos and colleagues [6] found that almost
a quarter of patients with newly diagnosed advanced non-small cell lung cancer
(NSCLC) in their large study did not receive ’gold-standard’ genomic testing
for any of the four guideline-recommended therapeutic targets (ALK, BRAF,
EGFR, and ROS1 alterations) before first-line treatment due to these limita-
tions. Consequently, there is an increasing demand for alternative solutions to
conventional molecular profiling methods, aiming to fulfill the pressing need for
comprehensive testing of molecular alterations[11].

Meanwhile, a growing body of evidence supports the use of deep learning in
analyzing hematoxylin and eosin (H&E) stained histopathology images to infer
molecular information [9, 10, 14, 15], demonstrating state-of-the-art performance
in predicting outcomes [9] and relevant biomarkers[10]. These methods have been
applied to predict single somatic mutations, copy number variations, molecular
subtypes, RNA expression, and prognosis [10, 15]. However, despite their suc-
cess in identifying overall gene mutation statuses, the precise prediction of the
protein consequences resulting from specific mutations within genes has yet to
be explored. This gap is significant, as variations at the protein level often hold
greater clinical relevance [7,20]. These specific alterations, hereafter referred to
as variants, dictate access to targeted therapies such as Sotorasib [7] and Ada-
grasib [22|. These drugs target specific protein variants like p.G12C in genes
such as KRAS in NSCLC, highlighting the importance of analyzing mutations
at a variant-specific level rather than solely at the gene level.

We address the need of predicting specific cancer-associated mutations and
variants across 11 cancer types, leveraging deep learning analysis of H&E dig-
itized slides. Our approach not only demonstrates the potential to accurately
predict variant alterations, often surpassing gene-level mutation accuracy but
also introduces a novel label-engineering paradigm to exploit unique morpholog-
ical signatures of these variants. Indeed, current developments in deep learning
methodologies primarily focus on enhancing architectures and training processes,
often overlooking the significance of available biological information. Our Multi-
VarNet method illustrates that this information can be intelligently leveraged to
enhance mutation prediction accuracy, offering a novel direction for advancement
in the field of histopathology.

2 Novel architecture for predicting gene variants

In this study, we introduce MultiVarNet, a novel deep learning approach designed
to predict genetic mutations, protein variants, and particularly, simplified gene
mutations. MultiVarNet is grounded in the hypothesis that each variant exhibits
a unique morphological signature, which can be leveraged to represent the mu-
tation’s morphological spectrum and improve the algorithm predictions. This
method (illustrated in Fig. 1.C) targets simplified gene mutations, defined by
the two most prevalent variants, utilizing a multi-modal strategy. Starting from
the diagnostic slides contained in Aperio SVS files from 11 TCGA datasets,
identified by the 'DX’ label in their filenames, we employ an in-house trained
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U-net for foreground extraction [18]. The slides are then segmented into 600x600
pixel patches at 5x resolution (Fig. 1.A). These image patches labeled with each
variant and their corresponding simplified genes are then fed to three distinct
ImageNet-based pretrained EfficientNetB7 neural networks [3, 21]. Following fea-
ture extraction via average pooling layers, the high-level variant features are
directed into two separate multilayer perceptrons (MLPs), each consisting of
a 128-dimension layer with dropout, culminating in unique linear and sigmoid
outputs for each variant (V1 and V2). These variant features, along with high-
level simplified gene features, are then concatenated and fed into another MLP,
followed by linear and sigmoid layers for the classification of simplified gene
mutations, where each of the three MLPs includes a 128-dimension layer with
dropout and a ReLU activation layer.
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Fig. 1: Proposed methodologies to predict gene mutations, protein alterations
and pseudo gene mutations.

3 Experimental Design

To validate MultiVarNet’s effectiveness, we compared it against a baseline ap-
proach. The baseline method involves predicting gene mutations, single variant
alterations, or simplified gene mutations using a conventional strategy. In this
setting, the image patches obtained after the foreground extraction are classified
using an EfficientNetB7 neural network pretrained on ImageNet [3, 21], proceed-
ing through an average pooling layer to a MLP setup, identical in structure
to those used in MultiVarNet, for final classification (as depicted in Fig. 1.B).
Both approaches utilized MLPs trained for 5 epochs on the training set with
Adam optimizer (learning rate: le-4, loss function: binary cross-entropy). Each
assessment was conducted through a 3-fold cross-validation approach, where in
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slides originating from the same case were grouped together within the same
fold for the same dataset. We assessed the discriminative power of the provided
approaches by computing the mean AUC across 3 folds and assessed the statis-
tical significance using Mann—Whitney U test [13]. Experiments were performed
using NVIDIA RTX A4000 graphics card, with Python 3.8, TensorFlow 2.13.0,
Keras 2.13.0, and CUDA 11.5 software stack.

4 Dataset and Data Processing

This study is based upon a retrospective analysis, employing de-identified scanned
Whole Slide Images (WSIs) procured from The Cancer Genome Atlas (TCGA)
project. TCGA dataset spans a diverse range of cancer types from multiple
centers. Comprehensive information regarding the TCGA dataset and patient-
related particulars can be found in [2,17]. In order to assess the robustness of our
methodology across a diverse spectrum of cancer sub-types, we curated a selec-
tion of 11 distinct TCGA datasets, as given in supplementary Table 1. Further,
we utilized a public dataset, which will be essential for other teams to replicate
our results.

To ensure adequate statistical power for quantifying significant effects, we re-
stricted our analysis to protein variants occurring in at least 15 patients. More-
over, we did not take into account the fast frozen for slides selection. Conse-
quently, this criterion yielded a final set of 20 gene mutations and 35 protein
alteration/pathology pairs across all datasets, as detailed in Table 1 and supple-
mentary Table 2.

We generated three types of labels to guide our analysis: genetic muta-
tion, protein variant, and simplified genes. To begin, we extracted critical in-
formation from the MAF (Mutation Annotation Format) file using the Mu-
Tect2 algorithm [1]. This information includes ‘IMPACT’, indicating the level
of pathogenicity (HIGH or MODERATE suggesting significant changes); ‘tu-
mor__Sample Barcode’, identifying the specific tumour samples; ‘Hugo Symbol’
denoting the gene symbols; and ‘HGVSp _Short’, which specifies the somatic mu-
tations at the protein level. We then labeled the presence of pathogenic mutations
with ‘1’ and the absence with ‘0’. Labels for protein variants were created based
on gene symbols and specific mutation details, allowing us to track mutations
down to their impact on protein structure. Gene mutations are flagged if any
pathogenic variant is detected, encompassing any significant alteration within a
gene.

The concept of simplified genes is developed to explore the impact of mor-
phological signatures from gene variants. Specifically, our MultiVarNet method
is tailored to incorporate just two variants per gene, combining them to enhance
the predictability of the gene as a whole. These simplified genes are constructed
from the two most prevalent variants of a gene, defining a simplified gene muta-
tion as the presence of either variant. This approach helps us determine whether
improvements in prediction accuracy come from the method itself or merely from
reducing complexity by excluding less common variants. Further details on pro-
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tein variant outcomes are discussed in Section 5.1. From 11 different pathologies,
we selected 8 simplified genes for this analysis.

5 Results

5.1 Gene Mutations Status and Variants Alteration Prediction

To predict gene mutations and precise protein variants from WSIs, we used the
established baseline deep learning setup. This model is key for predicting gene
mutations and protein variants in various cancers by analyzing digital pathology
slides on a large scale. We derived slide-level predictions by aggregating tile-level
predictions, focusing on the 99th percentile of these values as an indicator of mu-
tations [14]. We categorized clinically significant genes (KRAS, EGFR, IDHI,
BRAF, NRAS, presented in Table 1) separately from others (PIK3CA, TP53,
CDKN2A in Supplementary Table 2) due to spatial constraints. The model suc-
cessfully predicted 15 out of 20 gene mutations and showed that 20 out of 35
specific variant mutations were identifiable, and sometimes with higher accuracy
than their overall gene mutations. Among these mutations, the IDH1 gene mu-
tation showed robust discrimination in GBM (AUC=81.17%, P=1.07E-12) and
LGG (AUC=80.04% ,P=1.72E-34) (see Table 1). Similarly, for the NRAS gene
mutation, the baseline model achieved an AUC of 56.72% (P=0.026) and an AUC
of 77.58% (P=1.00E-08) for THCA for SKCM datasets. However, the model
exhibited reduced discriminative capacity for TP53 in LUSC (AUC=57.25%,
P=0.055), as detailed in supplementary Table 2. This variability underscores the
intricate nature of morphological signatures associated with mutations, empha-
sizing the imperative for our ongoing research to refine and enhance predictive
methodologies.

Some specific variant mutations were distinctly identifiable and achieved
higher AUC scores compared to the overall gene mutations AUC scores. For
instance, BRAF p.V600E (AUC=87.76%,P=6.54E-49) in THCA, as observed in
Table 1, exhibited enhanced discernibility compared to the gene’s overall muta-
tion (AUC=82.81%, P=5.36E-37). However, not all variant mutations showed
this pattern. Some, like p.Q61R for NRAS in THCA (AUC=70.88%, P=9.60E-
05) or p.V600M for BRAF in SKCM (AUC= 54.48%, P=0.34), were less pre-
dictable than their overall gene mutation counterparts. Interestingly, the pre-
dictability of the same protein variant, such as PIK3CA p.E545K (refer to Sup-
plementary Table 2), varied significantly across different types of cancer, suggest-
ing distinct morphological signatures specific to each variant. This observation
led us to evaluate whether we could take advantage of this fine-grained morpho-
logical signature to improve the predictability of overall gene mutations.

5.2 Simplified Gene Mutations Prediction

We designed the MultiVarNet proof-of-concept method to evaluate whether we
could take advantage of these morphological variabilities to improve the pre-
dictability of overall gene mutations, and compared it to standard weakly super-
vised setups used in the literature, using two aggregation methods for slide-level
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Table 1: Genes and protein variants prediction scores.

dataset|Gene |Variant Mean AUC (%)|Mean P value
COAD |[KRAS|All 66.31 4.26E-09
p.G12V 65.29 0.003
p.G12D 58.98 0.034
GBM |EGFR|Al 65.00 4.02E-09
p-A289V 67.33 0.0055
p.G598V 65.08 0.0386
IDH1 |All 81.17 1.07E-12
p-R132H 73.05 9.47E-06
LGG |IDH1 |Al 80.04 1.72E-34
p.R132C 74.33 8.34E-06
p-R132G 86.29 1.50E-06
LUAD |[EGFR|Al 62.823 0.0002
p.-L858R 75.67 1.57E-06
p.E746 _A750del|70.58 0.005
KRAS|Al 62.07 1.76E-05
p.G12D 63.53 0.045
p.G12C 55.12 0.2025
SKCM |BRAF|All 58.77 0.001
p.-V600E 64.64 3.67E-08
p-V600M 54.48 0.3431
NRAS|Al 56.72 0.0258
p.Q61L 58.62 0.2276
p.Q61K 70.76 3.67E-06
p-Q61R 63.46 0.0018
THCA |BRAF|All 82.81 5.36E-37
p-V600E 87.76 6.54E-49
NRAS|Al 77.58 1.00E-08
p.Q61R 70.88 9.60E-05

prediction accuracy: the 99th percentile and the mean of tile prediction values,
as detailed in recent studies [14,9] and considered as the best aggregators for
molecular prediction.

As shown by our results displayed in Tables 2 and 3, MultiVarNet con-
sistently outperformed the baseline models across various datasets and cancer
types, revealing a significant improvement in predictive accuracy as measured by
the Area Under the Curve (AUC). For example, in the bladder cancer (BLCA)
dataset, MultiVarNet using 99th percentile aggregator achieved a higher mean
AUC of 71.47% (P=2.39E-07) for the PIK3CA simplified gene mutation com-
pared to the baseline’s 69.14% (P=4.10E-06) as given in Table 2. Enhanced
performance was observed across multiple datasets, including COAD, SKCM,
and LUAD, underscoring the relevance of our approach in capturing the nuanced
morphological features associated with these mutations. However, in the UCEC
dataset for PIK3CA simplified gene mutation, the baseline model marginally out-
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performed MultiVarNet with the mean AUC of 65.12% (P=0.0031) compared to
MultiVarNet’s mean AUC of 64.75% (P=0.0039).

Table 2: Performance of baseline model and MultiVarNet for simplified gene
mutations (using the 99th percentile of their tile prediction values).

Dataset|Gene Number|Proteins Pair Baseline Model [14] [ MultiVarNet
Mutation |of cases mean AUC (%)/ |mean AUC (%)/
Mean P value Mean P value
BLCA |PIK3CA [43/386 |p.E545K, p.E542K |69.14/4.10E-06 71.47/2.39E-07
BRCA |PIK3CA [68/687 |p.E545K, p.E542K |56.872/0.0587 57.46/0.0403
COAD |[KRAS 81/451 |p.G12D, p.G12V |66.17/3.99E-06 67.21/9.10E-07
GBM |EGFR [17/389 |p.A289V, p.G598V|60.08,/0.0355 61.20/0.0195
LGG |IDH1 25/491 |p.R132C, p.R132G|84.10/2.47E-14 84.48/1.28E-14
LUAD |KRAS 72/478 |p.G12C, p.G12D |57.67/0.0319 60.30,/0.004
SKCM |NRAS [83/433 |p.Q61K, p.Q61R  [62.72/0.0001 64.52/1.39E-05
UCEC |PIK3CA |24/505 |p.E542K, p.G118D|65.11/0.0031 64.76,/0.0039

Table 3: Performance of baseline model and MultiVarNet for simplified gene
mutations (using the mean of their tile prediction values).

Dataset|Gene Number|Proteins Pair Baseline Model [9]|MultiVarNet
Mutation |of cases mean AUC (%)/ |mean AUC (%)/
Mean P value Mean P value
BLCA |PIK3CA [43/386 |p.E545K, p.E542K |71.94/1.30E-07 72.09/1.05E-07
BRCA |PIK3CA [68/687 |p.E545K, p.E542K(59.24/0.0110 59.58,/0.0084
COAD |KRAS 81/451 |p.G12D, p.G12V |65.75/7.05E-06 66.21/3.75E-06
GBM |EGFR [17/389 |p.A289V, p.G598V|68.61/0.0001 69.29/5.72E-05
LGG |IDH1 25/491 |p.R132C, p.R132G|85.62/1.68E-15 86.59/2.84E-16
LUAD |KRAS 72/478 |p.G12C, p.G12D |61.45/0.0013 60.94,/0.0022
SKCM |NRAS 83/433 |p.Q61K, p.Q61R  |62.99/0.0001 63.15/8.34E-05
UCEC |PIK3CA [24/505 |p.E542K, p.G118D|(69.96/9.41E-05 70.48/6.17TE-05

Consistent with the 99th percentile aggregator, the MultiVarNet also out-
performed the baseline model using the mean aggregation (Table 3) for simpli-
fied genes defined in various cancer subtypes. For instance, in BLCA (72.09%,
P=1.05E-07) compared to 71.94%, P=1.30E-07), BRCA (59.58%, P=0.0084 vs
59.24%, P=0.0110), COAD (66.21%, P=3.75E-06 vs 65.75%, P=7.05E-06), and
LGG (86.59%, P= 2.84E-16 vs 85.62%, P=1.68E-15), respectively. These find-
ings underscore MultiVarNet’s superior predictive accuracy for simplified gene
mutations across diverse cancer types.
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6 Conclusion and future work

The goal of precision oncology is to tailor therapeutic strategies to individual
molecular tumour profiles. Identifying tumour gene mutations is essential for
prescribing targeted therapies effectively [8]. Several deep learning methods [9,
10, 15] on WSIs have shown effectiveness in predicting gene mutations, offering
a cost-effective alternative. We demonstrate that is is possible to predict specific
protein variants from WSI with high accuracy, suggesting each variant may have
a distinct morphological signature, promising refinement in precision oncology
approaches.

Our experimental results show that MultiVarNet can improve existing meth-
ods in predicting gene mutations, highlighting the potential for enhancing deep
learning methods with variant-specific morphological signatures. These results
offer valuable insights for oncological research. For example, in breast cancer
(BRCA), our algorithms reliably identify PIK3CA gene variants p.E545K and
p.E542K, targeted by Alpelisib, hinting at pharmaceutical applications [19].
This specificity underscores the morphological consequences of mutations and
suggests predictability differences among variants may reflect their biological
impact, and could guide therapeutic strategies using morpho-molecular corre-
lations. In future work we will validate these results in external datasets to
overcome some of the known limitations of TCGA. In addition, we plan to ex-
plore a deeper biological integration, e.g. the prediction of signalling pathway
disruptions, to provide a more holistic view of tumoural behavior and therapeu-
tic opportunities.

In this study, we focus on the innovative application of our MultiVarNet
proof-of-concept method, emphasizing its potential to strengthen the prediction
of molecular alterations by harnessing distinct variant morphological signatures.
This approach is grounded in the integration of detailed molecular biology infor-
mation and label engineering, marking a departure from the traditional emphasis
on deep learning architecture and training methodologies. Given the exploratory
and pioneering nature of MultiVarNet, our comparison is limited to establish its
foundational capabilities and demonstrate its unique contribution to enhancing
gene-wide mutation predictability. This study spotlights the method’s novelty
and its potential to open new avenues for research, rather than positioning it as
another incremental improvement in model architecture or training processes.
The scope of comparative analysis is tailored to underscore the conceptual ad-
vancement MultiVarNet represents. We demonstrate that even with a simpler
model, we can achieve performance improvements. Our results are significant,
and future efforts will explore more sophisticated architectures to leverage these
findings effectively. One factor contributing to the relatively modest improve-
ment is that we benchmark our results against two state-of-the-art methods (|9,
14]) and focus exclusively on variants, which reduces the number of examples
and complicates the demonstration of enhanced performance. Analyzing more
complex architectures will require a systematic study of robustness on larger
datasets. TCGA, a multicentric and public dataset, allows for benchmarking
new methods, which is essential for other teams to replicate our results and
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build on our findings. However, external validation will further strengthen our
demonstration.

With this first paper we establish the principal feasibility and highlight the
need of this important biological context. In this paper we have demonstrated a
very exciting possibility of developing a new class of biomarkers. This paper lays
the groundwork for further research to enhance our understanding of fine-grained
tissue morphology. While exploring various architectures is important, this paper
sets a foundational baseline for a new set of challenges. The MultiVarNet method
is designed to show that each variant mutation within a single gene has a unique
signature that can be leveraged. Each MLP is tasked with predicting a specific
variant, thereby directing them to identify distinct morphological signatures,
rather than a composite of signatures. Finally, we do acknowledge that further
validation will be necessary before this technology can be translated into the
clinical setting.
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